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Abstract 
 

We begin by describing where and when Euler obtained the famous formula V + F = E + 2, 

which relates the number of vertices, edges and faces of a polyhedron that satisfies certain 

conditions. A few considerations are made about the relation of this formula with other 

problems and some difficulties of the original proof given by Euler. Then we move to the 

end of the 19th and beginning of the 20th century when the Euler characteristic and its 

generalization were linked to new topics in topology. Finally we present some of the 

generalizations of Euler characteristic which are used in recent (in the past 50 years) 

developments of topology. 
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Resumo 
 

Inicialmente descrevemos onde e quando Euler obteve a famosa expressão V + F = E + 2, 

que relaciona o número de vértices, arestas e faces de um poliedro que satisfaz certas 

relações. Fazemos algumas considerações sobre a relação entre esta fórmula e outros 

problemas, além de certas dificuldades com a demonstração original de Euler. A seguir, 

passamos ao fim do século XIX e início do século XX, quando a característica de Euler e 

sua generalização foram relacionadas a novos tópicos em topologia. Finalmente, 

apresentamos algumas generalizações da característica de Euler que têm sido utilizadas em 

desenvolvimentos recentes (últimos 50 anos) da topologia. 
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1. Introduction 
We can associate to a finite polyhedron an integer number. This number is related 

to the shape of the space, not to its size, whatever this means. If X is a polyhedron, then we 

denote this number by χ(X). This number is called nowadays the Euler characteristic (also 

Euler-Poincaré characteristic) of the space X. The original formulation of Euler’s result was 

(Euler 1758a, Proposition 4):  

“In any solid enclosed by planes, the sum of the number of solid angles 

and the number of faces exceeds the number of edges by 2.” (In omni 
solido hedris planis incluso aggretatum ex numero angulorum solidorum 
et ex numero hedrarum binario excedit numerum acierum.) 

The proof of this result was given by Euler (1758b).  

If V denotes the number of vertices, F the number of faces and E the number of 

edges of a polyhedron, then as a formula we read V + F = E + 2. Euler never writes it as V 
– E + F = 2. Despite the obvious fact that the two formulations are totally equivalent and 

almost the same, the latter formulation has one quite natural generalization which has 

motivated the definition of the so-called Euler characteristic of finite polyhedra and of 

certain spaces.  

The proof of the main result of Euler, which appears in his second work on the 

subject (Euler 1758b), had problems and several famous mathematicians tried to fix it. By 

the end of the 19th century, H. Poincaré worked out a relation between the Euler 

characteristic and the Betti number of a space. This work provides as a consequence that 

the Euler number is a topological invariant associated to certain spaces, i.e., it takes the 

same values if the spaces are homeomorphic. Therefore one can try to use this invariant to 

distinguish spaces and indeed it has been used successfully. It is worthy to mention that it is 

not clear if Euler’s main interest was to find formulae in the variables V, E, F that could be 

used to distinguish between spaces or instead to characterize the spaces which satisfy the 

formulae valid for regular polyhedra. Some people have been interested in this question and 

this topic has motivated the interesting article by Peter Hilton and Jean Pedersen (1996) 

entitled “The Euler characteristic and Pólya’s dream.” 

Given a square matrix one can associate to it a number called the determinant of 

the matrix. Many results can be stated using only this number associated to the matrix, 

instead of more complicated data of the matrix. In the same spirit, at least to certain spaces, 

we associate a number to them, the Euler characteristic. It has been shown along the years 

that much useful information about the space can be stated in terms of its Euler 

characteristic.  

The reader might wonder about many other formulae that one could define in 

terms of these variables, V, E and F. Is there another useful formula in terms of vertices, 

edges, faces etc., besides the one that gives the Euler characteristic? In some sense the 

integer valued function that gives the Euler characteristic is the only reasonable one, at least 

if we assume that it should satisfy very reasonable properties. This was established by C. 

Watts (1962).  
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Later developments motivated by the numerical invariant associated with a space 

consist of associating with a space, instead of a number, an element of some Abelian group 

which is attached to the space. This idea includes the original case by considering the 

Abelian group of the integers, Z. As a new situation the group can be taken to be the 

cohomology of the space. More details and examples will be given in sections 4 and 5.  

The purpose of this work is to give the steps which we believe were relevant to the 

development of the Euler characteristic and some recent aspects of its development in 

topology. We will try to provide enough references so that the reader can go deeper in a 

particular aspect of this work of Euler and related topics.  

It was a great challenge to write this article in the history of mathematics, a field in 

which the author has never done any research before. Being aware of the risk involved, I 

did decide to give it a try, in the hope of presenting a global picture of this very rich and 

broad topic, including the more recent aspects.  

 

2. The work of Euler about polyhedra and his formula 
Leonhard Euler was born on April 15, 1707 in Basel, Switzerland, and died on 

September 18, 1783 in Saint Petersburg, Russia. He went to the University of Basel when 

he was 13 years old and got to know Johann Bernoulli. At the age of 16 (in 1723) he got a 

first degree and at the age of 19 (in 1726) a higher one. He tried, without success, to obtain 

his first job at the same University. He applied to a position in the physics department. In 

November 1726 he accepted a job in St. Petersburg at the Russian Imperial Academy of 

Sciences, supported by Daniel and Nicholas Bernoulli, sons of Johann Bernoulli. Shortly 

after, in 1731, he became a professor of physiology. On June 19, 1741, he left Saint 

Petersburg and went to Berlin to the Prussian Academy of Sciences, invited by the King of 

Prussia, Frederick the Great, where he stayed from 1741 to 1766. During this period he 

wrote 380 works. Among them two were about polyhedra. The second of these contains 

proofs of relevant statements made in the first. They were written in 1750 and 1751, 

respectively, and sent for publication in the 1752-53 volume of the Novi commentarii of the 

Saint Petersburg Academy, which appeared in print only later, in 1758. During his stay in 

Berlin he was the tutor of the Princess of Anhalt-Dessau, Frederick’s niece, to whom he 

wrote a set of letters about various subjects in science. Those letters, published as a book in 

1768, amount to some hundreds of pages, and are by far the most widely read work of 

Euler. As a result of conflicts with the king and members of the Academy, especially 

Voltaire, he accepted an invitation to return to St. Petersburg in 1766. He died there on 

September 18, 1783. 

For the complete reference of the two papers mentioned above see Euler (1758a, 

1758b). These two papers were brought to the attention of many people since the time of 

their publication, perhaps firstly motivated by the beauty of theirs results and then by their 

applications. It turns out that the proof of the main result (Euler 1758b) was not complete. 

Very prominent mathematicians, among them Cauchy (1813) and Legendre, did some work 

trying to find a correct and complete proof. A quite interesting publication which refers to 

the gaps of the proof provided by Euler is the book by I. Lakatos (1976). Let me point out 

that the difficulty included the lack of a precise definition of the concepts of face, edge and 

vertex. See more about this in Grünbaum and Shephard (1994, particularly section 6). 
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Another historical aspect that is worthy mentioning is the relation between the 

work of Euler and the work of Descartes. Roughly speaking (see Hilton and Pedersen 1996 

for more details) we can consider the sum of the face angles of each vertex. This sum does 

not exceed 2π and the difference between this sum and 2π is called the angular defect. René 

Descartes proved that the sum of the angular defect over all vertices of a convex 

polyhedron is 4π. It turns out that this formulation is equivalent to the formula given by 

Euler (see Hilton and Pedersen 1996 for a proof). Since Descartes (1596-1650) lived before 

Euler (1707-1783), it is natural to ask if Euler knew the result of Descartes. To know more 

about this see Hilton and Pedersen (1996) and Grünbaum and Shephard (1994), wherefrom 

it seems to me that one can conclude that there is no evidence to support a positive answer 

to this question.  

Let us move to the 19th century and see a little of the route started by Euler 

towards modern topology.  

 

3. Some early applications and generalizations of Euler’s formula 
A consequence of Euler’s formula is that in contrast with the fact that in the plane 

there are infinite many regular polygons, in the space there are only a finite number of 

regular polyhedra.  

The route started by Euler with his polyhedral formula was followed by the little 

known mathematician Simon-Antoine-Jean Lhuilier (1750-1840), who worked for most of 

his life on problems relating to Euler’s formula. Lhuilier published an important work on 

the subject (Lhuilier and Gergonne 1813). One of the results was a consequence of Euler's 

formula for graphs. Given a graph (a space formed by a union of points and edges), when 

can it be embedded in the plane? Using Euler’s result Lhuilier solved this problem. He also 

noticed that Euler's formula was wrong for solids with holes in them. If a solid has g holes 

then Lhuilier showed that V – E + F = 2 – 2g. This was the first known result of a 

topological invariant. One can verify that this number distinguishes almost completely two 

closed surfaces. If we consider triangulations of the torus and the Klein bottle, we can 

compute and verify that they have the same Euler characteristic, which is zero. 

Nevertheless, it is true that two orientable surfaces are homeomorphic if and only if they 

have the same Euler characteristic. With one extra element associated to a surface (namely, 

the orientability), in addition to the Euler characteristic, one can distinguish completely 

between two closed surfaces. Then it was natural to ask about topological invariance and 

possible generalizations for higher dimensions.  

It is clear that the hypothesis that the polyhedron is convex (stated as “solid 

enclosed by planes”) is not necessary in order to have V – E + F = 2. In figure 1, we have 

two examples. In the first example we consider the union of two tetrahedra glued by their 

bases such that the projection of one vertex falls inside the triangle and the other falls 

outside, far away. In the second example, we again consider the polyhedron as a union of 

two tetrahedra. The vertex of the second tetrahedron is in the interior of the first 

tetrahedron. Euler's convex polyhedra formula had been generalized to not necessarily 

convex polyhedra by Jonquières in 1890. This was a great step towards the result stating 

that the Euler number is a topological invariant.  
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Figure 1. See text for explanation. 

 

Poincaré put Euler's formula into a completely general setting of a p-dimensional 

variety V (Poincaré 1899). The idea of connectivity was eventually put on a rigorous basis 

by him in a series of papers called “Analysis situs”. Poincaré introduced the concept of 

homology and gave a more precise definition of the Betti numbers associated with a space 

than had Betti himself. Also, while dealing with connectivity Poincaré introduced the 

fundamental group of a variety and the concept of homotopy.  

Before we move on, we may wonder how one could guess the integer valued 

functions in terms of the vertices, edges, faces etc. which could be useful to distinguish 

between spaces. So we have in mind such formulae that remain invariant for any possible 

subdivision of the space in terms of vertices, edges, faces etc. Consider the canonical 

process to construct a new subdivision from an old one by making the barycentric 

subdivision. Locally the process consists of making subdivisions of faces. So let us 

compute the difference between the number of vertices, edges and faces of the old 

subdivision and the new one for only two polygons. Figure 2 below shows all the numbers. 

From the data one can read that the sum of the variation of the vertices plus the faces equals 

the variation of the number of edges. As we make a subdivision of the faces we do not 

change the shape of the space. This example tells us that the function which maps (V, E, F) 

to V – E + F satisfies what we want. Furthermore, there is no other linear map on the three 

variables (V, E, F) which satisfies the condition above besides the multiples of the map V – 
E + F. 
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Triangle 3, 3, 1 

 
 

Subdivision of the 

Triangle 7, 12, 6 

 The difference is 4, 9, 5  

Square 4, 4, 1 

  

Subdivision of the 

Square 9, 16, 8 

 The difference is 5, 12, 7  

Figure 2. See text for explanation. 

 

 

4. Extensions and applications 

The starting point for spaces of higher dimension is the sphere Sn, the obvious 

generalization of the first case studied, the sphere S2. It was Ludwig Schläfli in 1901 

(Schläfli 1901) who computed the Euler characteristic of the sphere Sn. Namely, he shows 

that χ(Sn) = 1 + (–1)n, i.e., it is zero if n is odd and 2 if n is even. So, infinitely many 

different spaces can have the same Euler characteristic. Nevertheless, the next application 

seems interesting.  

Let us consider a differentiable manifold M. Then we have the notion of a tangent 

space and also of a vector field, which is a family of vectors, one for each point of M 

distributed in a continuous way. It is an interesting problem to know if there is a vector 

field such that at every point the vector is not the null vector. In 1926, H. Hopf (Hopf 1926; 

Alexandroff and Hopf 1935, Satz III, p. 552) proved the following result: 

There exists a nowhere-vanishing vector field over the manifold M if and 
only if the Euler characteristic of M, denoted by χ(M), is zero. 

Observe that the existence of a nowhere vanishing vector field over the manifold M 
provides an interesting self-map of M. Namely, for each point x ∈ M consider δexpx(vx), 

where vx is the vector at the point x, δ is a small positive number and expx is the 

exponential map at the point x. This is a function which is continuous, is a deformation of 

the identity map and has no fixed point. There are continuous versions of this result (so M 

is no longer differentiable), namely one about vector fields and the other about fixed-point-

free maps, i.e., maps which do not have fixed points. We explain each one of the cases.  
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A notion of path fields was introduced by John Nash (1955) and it generalizes the 

notion of vector field. Then we have the notion of a path field over a topological manifold 

where we do not have a differentiable structure. A little after, in 1965, R. Brown (1965) 

proved that a topological manifold admits a non-singular path field if and only if χ(M) ≠ 0. 

Many other results were proved along this line, even in the equivariant context. Very 

recently, L. D. Borsari, Fernanda Cardona and Peter Wong (2009) have shown the 

equivariant analog of Brown’s theorem for topological manifolds under certain conditions 

on the action. Their work also provides a clear exposition of the results obtained after Nash, 

and the notion of the equivariant Euler characteristic. See also the last section of the present 

paper for the equivariant Euler characteristic.  

Suppose that M is a polyhedron, which may even not be a manifold. So we cannot 

talk about vector fields. Let id denote the identity map of M. Certainly id has fixed points. 

In fact, every point of M is a fixed point. The question is to know whether there exists a 

map g which is a deformation of id such that g is fixed-point-free. Again the following 

result is due to Hopf (Brown 1971): 

There exists a map g homotopic to the identity which is fixed-point-free if 
and only if χ(M) is zero.  

The theory of vector bundles became a very important subject for the study of 

manifolds. One can read properties of the manifold by the knowledge of the bundles over it. 

The tangent bundle of a manifold is a special case of such vector bundles. Roughly 

speaking a vector bundle is a collection E of vector spaces Rn indexed by a topological 

space B, with a topology which locally looks like a product U × Rn. Formally, an n-

dimensional vector bundle ξ over a space B is a triple (E, B, p) where p: E → M is a 

continuous map such that the pre-image of each point of M is a vector space of dimension n 

and certain properties hold. For the complete formalization and further properties of these 

spaces see Husemoller (1974), Steenrod (1951) and Milnor and Stasheff (1974). We can 

think of a vector field in terms of sections of the vector bundle, i.e., continuous maps s: B 

→ E such that the composite p o s = idB. A vector over a point b ∈ M is an element of the 

pre-image of b by the map p. For a given bundle one would like to know when it admits a 

nowhere-vanishing vector field. Let E → M be a bundle over M. There are certain 

invariants associated to this bundle which can be used to derive properties of the bundle and 

eventually of the manifold. These invariants, on the one hand, do not characterize the 

bundle but, on the other hand, are more amenable to computation. This phenomenon can 

occur quite often. One is further to the real object but gains in capacity of computation. The 

invariants that we refer to are the so-called characteristic classes (Husemoller 1974; 

Steenrod 1951; Milnor and Stasheff 1974). The characteristic classes are cohomology 

classes of the base space, i.e. elements in H*(M), where we purposefully omit the 

coefficient. Depending on the coefficient various types of characteristic classes are defined. 

We would like to point out a particular one, which is a cohomology class in Hn(0��ä). 

Recall that the integer n is the dimension of the vector space of the fiber. This is called the 

Euler class of the fiber bundle, when one extra hypothesis is assumed, which is orientability 
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(Husemoller 1974, Definition 7.4, p. 240). What is the relation between this so-called Euler 

class and vector fields, and why is it called Euler class? For the first question we have: 

suppose you want to construct a nowhere-vanishing vector field of ξ. A standard procedure 

to do that is trying to construct such vector field over the vertices, and then extend it over 

the edges, over the triangles etc. The first possible obstruction to perform this extension is 

to extend over the higher dimension tetrahedral (simplexes) of dimension n. This 

obstruction is precisely the Euler class. This means we do have a nowhere-vanishing vector 

field over the n-skeleton of M if and only if the Euler class is trivial.  

For the second question let us consider the special and important vector bundle 

over a manifold M which is its tangent bundle. In this case if we apply the considerations 

above, we do have (since the dimension of the base space is the same as the vector space 

which gives the fiber) that there is a nowhere-vanishing vector field on the manifold M if 

and only if the Euler class is trivial. But the Euler class is a multiple of the so called 

fundamental class µn ∈ Hn(M, Z) ≅ Z of the manifold. The factor which multiplies µn is the 

Euler characteristic. Thus, one can recover the result of Hopf. Therefore the Euler class of 

the fiber bundle can be regarded as a generalization of the Euler characteristic of the base 

space.  

Furthermore, similar considerations can be made for non-orientable fiber bundles. 

Let us briefly sketch the differences. For simplicity, we will consider only the case of the 

tangent bundle. In this case we look for a class which lies in Hn(M, ä), where now we have 

cohomology with local coefficients. This local coefficient system is the system defined by 

taking the class of a loop in M and associating to it the automorphism of Z which is 

multiplication by 1 if the loop is orientation-preserving and –1 if the loop is orientation-

reversing. If the manifold is orientable, then this is the usual trivial local coefficient system. 

In any case, for a compact manifold without boundary the result is Hn(0��ä) ≅ Z. For a 

specific choice of a generator µM of Hn(0�� ä) ≅ Z we have that the Euler class of the 

tangent bundle of M is the product χ(M)µM. As we can see, the Euler class contains the 

information about the Euler characteristic of M when we specialize to the tangent bundle. 

Therefore, the Euler class can be seen as a generalization of the Euler characteristic.  

 

5. Axioms for the Euler number and some extensions 
In 1962 Charles Watts published a paper entitled “On the Euler characteristic of 

polyhedra” (Watts 1962). This work was inspired by the definition of sheaves over a space 

(Borsari, Cardona and Wong 2009). Let us consider the family of spaces which are 

homeomorphic to a finite polyhedron. Let Y be a polyhedron and X ⊂ Y a sub-polyhedron. 

The main result of the paper is: 

 

Theorem: Let ε be a function defined on the family of the triangulable spaces with base 
point and which admits a finite triangulation such that 
 

(1) ε(Y) = ε(X) + ε(Y/X), 
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(2) ε(S0 = two points) = 1.  

 

Then ε(Y) + 1 = χ(Y).  

 

If one forgets axiom 2, the trivial constant map which associates to each space the value 

zero satisfies axiom 1. This function has no interest. The additive property stated in axiom 1 

is quite natural and has motivated further works.  

The notion of Euler characteristic goes beyond the spaces homeomorphic to 

polyhedra. Let (Y, X) be a pair of spaces such that the homology groups with integer 

coefficients Hi(Y, X) are finitely generated and zero for large i. Then we define the Euler 

characteristic ξ(Y, X) of the pair (Y, X) to be the integer  

 

ξ(Y, X) = Σi ≥ 0(–1)i rank(Hi(Y, X)), 

 

with the convention that ξ(Y) = ξ(Y, ∅). We have the following result: 

 

Proposition (tom Dieck 1979, Proposition 1.6): If two numbers among ξ(Y), ξ(X) and ξ(Y, 
X) are defined, then so is the third, and  

 

ξ(Y) = ξ(X) + ξ(Y, X). 

 

This topological Euler characteristic has motivated the following quite general 

approach. Following Tammo tom Dieck (1979, chapter 5), an Euler-Poincaré map is a map 
from a certain category of A-modules to an Abelian group which is additive on certain 
exact sequences. This may sound too general but it leads to the interesting notion of the 

universal Euler characteristic.  

The previous example fits in this notion of Euler-Poincaré map by taking as the 

category of R-modules the complexes {Cn}n∈N where Cn are finitely generated Abelian 

groups and Cn is trivial for n large, and the map given by the formula  

 

Σi ≥ 0 (–1)i rank(Ci). 

 

For the notion of a universal Euler characteristic let us fix a certain category of A-

modules. Then we consider all maps on Abelian groups which are additive. A pair (e, G) 
where e is additive and take values on the Abelian group G is called a universal Euler 
characteristic for the category of A-modules if given any Euler-Poincaré map e1 with values 
on an Abelian group H then there is a unique group homomorphism φ: G → H such that e1 
=  φ o e. A natural problem which has been considered is to find a universal Euler 

characteristic for a given category of A-modules.  
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In topology we have the notion of G-spaces and in particular G–CW-complexes, 

where G is a Lie group. For a compact Lie group and a finite G–CW-complex one can 

define a notion of Euler characteristic for such G-spaces, also called the equivariant Euler 

characteristic. As expected, if G is the trivial group then we obtain the usual Euler 

characteristic. One can also define a notion of a universal Euler characteristic for finite G–

CW-complexes and can be proved that it is unique in some sense. The details are too 

technical to be described here. All this material can be found in tom Dieck (1979, chapter 5, 

particularly in section 5.4), where the universal Euler characteristic for finite G–CW-

complexes is computed.  
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