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Resumo 

 

Discutimos alguns aspectos do desenvolvimento da geometria diferencial que podem ser 

considerados como tendo sido influenciados pela teoria da Relatividade Geral. Mostramos 

como a busca de Einstein por uma completa geometrização da matéria e do 

eletromagnetismo deu origem a uma quantidade enorme de trabalhos, tanto em Física 

Teórica como em Matemática. Salientamos também o papel desempenhado por 

investigações recentes na Física Teórica na obtenção de novos resultados em algumas áreas 

da geometria diferencial moderna.   
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Abstract 

 

We briefly review a few aspects of the development of differential geometry which may be 

considered as being influenced by Einstein’s general relativity. We focus on how 

Einsteins’s quest for a complete geometrization of matter and electromagnetism gave rise to 

an enormous amount of theoretical work both on physics and mathematics. In connection 

with this we also bring to light how recent investigation on theoretical physics has led to 

new results on some branches of modern differential geometry. 
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Introduction 

It is almost impossible to give a fair account of all consequences brought about by 

Einstein’s scientific work on the development of modern human thought. In physics, 

Einstein’s thought was so revolutionary that pratically no branch of this science has escaped 

its influence. Besides physics, the newborn concepts of space, time and space-time, as well 

as the quantum nature of the microscopic world, have had great impact also on the field of 

philosophy. Indeed, as early as in 1922, the French philosopher Henri Bergson [1], who 

was originally trained in mathematics, wrote a polemical and critical work on the notion of 

time coming from special relativity. After the formulation of the general theory of relativity 

and the birth of relativistic cosmology many other philosophers felt imediately impelled to 

discuss philosophical aspects of the new theory. The British philosopher Bertrand Russel is 

a good example: his book on the theory of relativity, published in 1925 [2] is a nice and a 

pedagogical account of Einstein’ ideas written with a logical positivism flavour. The 

apparent success of non-Euclidean  geometry to describe our physical world seemed to 

radically discard the well-established Kant [3] concepts of space and time as a priori 

notions and this issue is still a subject of debate among philosophers of science. Then 

comes mathematics. The impact Einstein´s general relativity has had in mathematics is 

immense. No wonder that it has not, as far as we know, been fully assessed by historians of 

science. Of course we have no intention to embark on such a endeavour here. In this article, 

our aim merely consists in pointing out a few particular mathematical developments which 

in our view were directly stimulated by Einstein´s ideas. In the first section we give a short 

outline of the general theory of relativity, some important historical facts and later 

developments. In the second section, we a take as a case study the discovery of some 

embedding theorems of differential geometry and show how they were physically 

motivated in the light of modern theoretical physical research. 

 

The general theory of relativity ( a very brief outline) 

Historically the general theory of relativity (1915) grew out of the special theory 

(1905). The mathematical structure of the later in its original formulation was very simple. 

However, soon after the appearance of the special theory, two mathematicians, Hermann 

Minkowski [4] and his contemporary colleague Henri Poincaré [5] made significant 

contributions to its mathematical structure by realizing that the set of all Lorentz 

transformations, i.e. those which relate two different inertial reference frames, constitutes a 

group and that this group leaves invariant a certain quadratic form defined in a four-

dimensional space M4 (or Minkowski space-time). This invariant is now referred in all 

relativity textbooks as the interval (pseudo-distance) between two events (points in M4). In 

view of this discovery it would be more natural in the context of special relativity theory to 

treat space and time no more as separate entities, but as mixed together into a new entity, 

the space-time. The reaches of this apparently innocuous finding were to be tremendous. 

Two comments are in order. First, a new branch of mathematics was born. Lorentz 

invariance stimulated the investigation of a new kind of manifolds endowed with indefinite 

metrics, now known as semi-Riemannian (or pseudo-Riemannian) manifolds [6]. Second, 

from the standpoint of physics, there was the hint that the new relativistic theory of 

gravitation ought to be formulated in a four-dimensional space-time, and that, combined 
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with the Principle of Equivalence, ultimately led to the geometrization of the gravitation 

field, and it is here that lies the astounding beauty of the general relativity theory. Physics 

and geometry are identified and geometrical curvature mimics the effects of gravitational 

forces acting on particles. 

General relativity assumes that in the presence of gravitation our space-time is best 

represented by a four-dimensional manifold endowed with a Lorentzian metric. It says 

nothing about the space-time global topology, so in this respect it is still a local theory [7]. 

An elegant set of partial hyperbolic non-linear equations, found by Einstein and Hilbert 

[8,9], is used to determine the metric fields from the distribution of matter in space-time. 

Einstein himself did not expect to solve his field equations exactly and the first solution was 

obtained by Karl Schwarzschild in 1916 [10]. Schwarzschild’s solution describes the 

geometry of the space-time outside a spherically symmetric matter distribution and 

contained two puzzling features: the existence of an event horizon and a space-time 

singularity. Both these aspects of Schwarzschild’s solution, which is the prototype of a 

noncharged static blackhole, were to generate a great deal of mathematical work in the 

following years. 

Very soon general relativity theory was applied to cosmology. In 1917 Einstein 

wrote a paper in which he modifies the field equations to tackle the problem of finding the 

geometry of the Universe [11]. His cosmological model described a homogeneous, 

isotropic and static universe whose spatial geometry may be viewed as the geometry of a 

hypersphere embedded in an Euclidean four-dimensional space. This was a nice example of 

a finite universe with no boundaries. However, Einstein's universe did not account for the 

recession motion of galaxies, observed in 1929 by the American astronomer Edwin Hubble. 

The discovery of this effect, which was interpreted by the Belgian physicist Georges 

Lemaître [12] as an evidence of the expansion of the Universe, would drastically change 

our view of the Cosmos. Indeed, the only plausible explanation of the fact that galaxies are 

moving away from us is that the Universe is expanding. Curiously enough, an expanding 

solution of Einstein's original field equations had already been obtained by a little known 

Russian scientist, Alexander Friedmann, in 1922.  Friedmann's time-dependent solution 

introduced a revolutionary ingredient in our view of the Universe: the idea that the Cosmos 

started out with a big bang. In mathematical terms it means that the geometry of 

Friedmann's model, like Schwarzschild's solution, contains a singularity (space-time is 

geodesically incomplete [13]). Careful investigation of the nature and mathematical 

structure of singularities found in solutions of Einstein's field equations ultimately led 

Roger Penrose [14] and Stephen Hawking [15], in the sixties, to discover the famous 

singularities theorems which have strongly boosted the study of global aspects of general 

relativity [16] where methods of differential topology have been extensively employed to 

investigate the problems [17]. 

 

General relativity and differential geometry 

One of the most cherished projects of contemporary theoretical physicists is to find 

a theory capable of unifying the fundamental forces of nature, a theory of everything, as it 

has been called. Unification, in fact, has been a feature of all great theories of physics. In a 

certain sense Newton, Maxwell and Einstein, they all succeeded in performing some sort of 
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unification. Twentieth century physics has recurrently pursued this theme. Now broadly 

speaking one can mention two different paths followed by theoreticians to arrive at unified 

field theory. First there are the early attempts of Einstein, Weyl, Cartan, Eddington, 

Schrödinger and many others, whose task consisted of unifying gravity and 

electromagnetism [18]. The methodological approach of this group consisted basically in 

resorting to different kind of non-Riemannian geometries capable of accomodating new 

geometrical structures with a sufficient number of degrees of freedom to describe the 

electromagnetic field. In this way different types of geometry have been "created", such as 

affine geometry (asymetric connection), Weyl's geometry (where the notion of parallel 

transport differs from Levi-Civita's notion), etc. It is not easy to track further developments 

of these geometries motivated by general relativity. Already in 1921 the Dutch 

mathematician Schouten wrote: "Motivated by relativity theory, differential geometry 

received a totally novel, simple and satisfying foundation" (quoted in [18]). However, the 

snag with all these attempts was that they completely ignored quantum mechanics and dealt 

with unification only in a classical level. Of course, an approach to unification today would 

necessarily take into account quantum field theory. Now the second approach to unification 

comes into play. It has to do with the rather old idea that our space-time may have more 

than four dimensions. 

The story starts with the work of the Finnish physicist Gunnar Nordström [19], in 

1914. Nordström realised that by postulating the existence of a fifth dimension he was able 

(in the context of his scalar theory of gravitation) to unify gravity and electromagnetism by 

embedding space-time into a five-dimensional space. Although the idea was quite original 

and interesting it seems the paper did not attract much attention due to the fact that his 

gravitation theory was not accepted at the time. Then, soon after the completion of general 

relativity, Théodor Kaluza, and later, Oscar Klein, launched again the same idea, now 

entirely based on Einstein's theory of gravity. In a very creative manner the Kaluza-Klein 

theory starts from five-dimensional vacuum Einstein's equations and show that, under 

certain assumptions, they reduce to a four-dimensional system of coupled Einstein-Maxwell 

equations. The paper was seminal and gave rise to several different theoretical 

developments exploring the idea of achieving unification from extra dimensionality of 

space. Indeed, through the old and modern versions of Kaluza-Klein theory [20,21], 

supergravity [22], superstrings [23,24], and to the more recent braneworld scenario [25,26], 

induced-matter [27,28] and M-theory [29], there is a strong belief among some physicists 

that unification might be finally achieved if one accepts that space-time has more than four 

dimensions. 

  Amidst all these higher-dimensional theories, one of them, the induced-matter 

theory (also referred to as space-time-matter theory [27, 28]) has called our attention for it 

recalls Einstein’s belief that matter and radiation (not only the gravitation field) should be 

viewed as manifestations of pure geometry [30]. Kaluza-Klein theory was a first step in this 

direction. But it was Paul Wesson [28], from the University of Waterloo, who pursued the 

matter further. Wesson and collaborators realized that by embedding the ordinary space-

time into a five-dimensional vacuum space, it was possible to describe the macroscopic 

properties of matter in geometrical terms. In a series of interesting papers Wesson and his 

group showed how to produce standard cosmological models from five-dimensional 
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vacuum space. It looked like any energy-momentum tensor could be generated by an 

embedding mechanism. At the time these facts were discovered, there was no guarantee 

that any energy-momentum could be obtained in this way. Putting it in mathematical terms, 

Wesson’s programm would not work always unless one could prove that any solution of 

Einstein's field equations could be isometrically embedded in five-dimensional Ricci-flat 

space [31]. As it happens, that was exactly the content of a beautilful and powerful theorem 

of differential geometry now known as the Campbell-Magaard theorem [32]. Although very 

little known, the theorem was articulated by the English mathematician John Campbell in 

1926 and was given a complete proof only in 1963 by Lorenz Magaard [33]. (At this point 

may we digress a little bit. Campbell, who died in 1924 [34], was interested in geometrical 

aspects of Einstein's relativity and his works [35] were published a few years before the 

classical  Janet-Cartan 
1
 [36] theorem on embeddings was established. Manifolds called 

Einstein spaces had begun to attract the interest of mathematicians soon after the discovery 

of Schwarzschild space-time and de-Sitter cosmological models). Now compared to the 

Janet-Cartan [36] theorem the nice thing about the Campbell-Magaard's result is that the 

codimension of the embedding space is drastically reduced: one needs only one extra-

dimension, and that perfectly fits the requirements of the induced-matter theory. Finally, let 

us note both theorems refer to local and analytical embeddings (the global version of Janet-

Cartan theorem was worked out by John Nash [37], in 1956, and adapted for semi-

Riemannian geometry by R. Greene [38], in 1970, while a discussion of global aspects of 

Cambell-Magaard has recently appeared in the literature [39]). 

 

Higher-dimensional space-times and the search for new theorems 

Apart from induced-matter theory, there appeared at the turn of the XX century 

some other physical models of the Universe, which soon attracted the attention of 

theoreticians. These models have put forward the idea that ordinary space-time may be 

viewed as a four-dimensional hypersurface embedded not in a Ricci-flat space, but in a 

five-dimensional Einstein space (referred to as the bulk) [25, 26]. Spurred by this proposal 

new research on the geometrical structure of the proposed models started. It was 

conjectured [40] and later proved that the Campbell-Magaard could be immediately 

generalized for embedding Einstein spaces [41]. This was the first extension of the 

Campbell-Magaard theorem and other extensions were to come. More general local 

isometric embeddings were next investigated, and it was proved that any n-dimensional 

semi-Riemannian analytic manifold can be locally embedded in a (n+1)-dimensional 

analytic manifold with a non-degenerate Ricci-tensor, which is equal, up to a local 

analytical diffeomorphism, to the Ricci-tensor of an arbitrary specified space [42]. Further 

motivation in this direction came from studying embeddings in the context of non-linear 

sigma models, a theory proposed by J. Schwinger in the fifties to describe strongly 

interacting massive particles [43]. It was then showed that any n-dimensional Lorentzian 

manifold (n≥3) can be harmonically embedded in a (n+1)-dimensional semi-Riemannian 

                                                         
1 Janet-Cartan theorem originated from a conjecture by Schläff, in 1873, and states that if the embedding space is 

flat, then the maximum number of extra dimensions needed to analytically embed a Riemannian manifold is d , 

with 0 ≤ d ≤ n(n-1)/2. The novelty brought by Campbell-Magaard theorem is that the number of extra dimensions 

falls drastically to d=1 when the embedding manifold is allowed to be Ricci-flat (instead of Riemann-flat). 
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Ricci-flat manifold [44]. As a final remark on the Campbell-Maggard theorem and its 

application to physics, let us note that its proof is based on the Cauchy-Kowalevskaya 

theorem. Therefore, some properties of relevance to physics, such as the stability of the 

embedding, cannot be guaranteed to hold [45]. Nevertheless, the problem of embedding 

space-time into five-dimensional spaces can be considered in the context of the Cauchy 

problem  in general relativity [46]. Specifically, it has recently been shown that the 

embedded space-time may arise as a result of physical evolution of proper initial data. This 

new perspective has some advantages in comparison with the original Campbell-Magaard 

formulation because it allows us, by exploring the hyperbolic character of Einstein field 

equations, to show that the embedding has stability and domain of dependence (causality) 

properties [47]. 

 

Conclusion 

We would like to conclude by pointing out that all these developments essentially 

grew out of one great theory: General relativity. Underlying this connection between 

physics and geometry there is the basic idea that a theory of the gravitational field must be a 

metric theory. Now there is a vast number of metric theories. Their motivation is twofold: 

quantization of gravity and its unification with the other physical fields. Some of these 

theories postulate the existence of extra dimensions of the Universe and these 

multidimensional theories of space-time have employed a complex and sophisticated 

mathematical language, imported from modern differential geometry and topology. That 

strange belief on "the unreasonable effectiveness of mathematics in the natural sciences", as 

put by the physicist E. Wigner [48], seems to be still alive among contemporary physicists. 

However, this is a mutual process of interaction between the two sciences. In this paper we 

have tried to explore the other side of this relationship, and how physical research can be 

beneficial to the development of mathematics itself, in particular the important role 

Einstein's general relativity has played in promoting progress of some branches of modern 

differential geometry. 
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