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Abstract 

 

Charles de Bouvelles (1471–1553) was a canon of the cathedral of Noyon, where he 

dedicated most of his energies to scholarly pursuits centering around mathematics, 

philosophy and theology. His introduction to geometry (1511), written for craftsmen and 

artisans, was the first geometry text to be published in French instead of Latin. The work was 

not very successful and, thus, was re-elaborated and republished in 1542. The present text 

investigates Bouvelles’ presentation of star polygons in the 1542 text, relating it to his 

investigations of figurate numbers and placing it in its cultural context. 
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[A INTRODUÇÃO A POLÍGONOS ESTRELADOS DE CHARLES DE BOUVELLES] 

 

 

Resumo 

 

Charles de Bouvelles (1471–1553) foi cônego do catedral de Noyon, onde ele se dedicou a 

maior parte das suas energias a atividades eruditas centradas em matemática, filosofia e 

teologia. Sua introdução à geometria de 1511, escrita para artisãos, foi o primeiro texto de 

geometria a ser publicado em francês em vez de latim. Teve pouco sucesso e, assim, foi 

reescrito e republicado em 1542. O presente text investiga a apresentação de Bouvelles de 

polígonos estrelados no texto de 1542, comparando-a com as suas investigações sobre 

números figurados e colocando-a no seu contexto cultural. 

 

Palavras-chave: História da Geometria, Polígonos estrelados, Charles de Bouvelles. 

 

  



JOHN A. FOSSA 

RBHM, Vol. 25, nº 49, pp. 1–17, 2025 2 

Introduction  

 

Renowned in his lifetime as one of France’s 

foremost thinkers, Charles de Bouvelles 

(1471–1553)1 has been, for the most part, 

gobbled up by the vicissitudes of history. Still, 

we have come across him once before (Fossa, 

2020) as the author of a very nice proof by 

exemplification [see also Fossa (2021)] of the 

proposition that every perfect number is 

triangular, which is contained in his little 

work Liber de perfectis numeris. [Bouillus 

(1510)]. In any case, he was born into an 

aristocratic family in Soyécourt, a small 

community about 24 kilometers east of 

present-day Amiens and about 120 kilometers 

north of Paris. The principal city of the region, 

Amiens was known at one time by the 

Romans as Samarobriva and, thus, Bouvelles 

was known in Latin as Carolus Bouillus 

Samarobrinus. He went to university at Paris, 

but apparently did not finish before the city 

was sorely hit by the plague, which induced 

him to travel about the country, as well as to 

visit other European centers. Upon returning to 

Paris, he was ordained a priest and taught at the 

Collège du Cardinal-Lemoine, a collège associated with 

the University of Paris, where, in fact, he had been a 

student. Later he was appointed a canon of the cathedral 

of Noyon, a town located about 60 kilometers to the 

southeast of Amiens. As a canon, his principal duties 

would have been teaching, giving assistance to the poor 

and, especially, organizing the choir. He was also elector 

of the Collégiale Saint-Quentin (now Basilique Saint-

Quentin) in the town of Saint-Quentin, about 80 

kilometers to the east of Amiens, named after the 3rd 

century martyr Caius Quintinus (?–287), also known as 

Quentin d’Amiens. In 1521, Bouvelles dedicated a 

stained-glass window to the Basilique, depicting Saint 

Catherine (see Figure 1). Bouvelles himself is pictured 

kneeling in the bottom left-hand corner (see Figure 2). 

Apparently, his ecclesiastical duties at Noyon were very 

 
1 His dates are also given as (1475-1566). I follow O’Connor e Robertson (2002). 

Figure 1. Bouvelles’ stained-glass window. 
Source: Mimesi (2012). 

Figure 2. Detail of Figure 1. 
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light, due to the support given to him by the local bishop, who wanted to encourage him in 

his scholarly pursuits. These pursuits centered around mathematics, philosophy and theology. 

One of his abiding interests in geometry was that of squaring the circle – in his time still an 

open question –, which earned him a brief mention in Augustus De Morgan’s A Budget of 

Paradoxes (see De Morgan, 1915)). 

 

An Arithmetical Propaedeutic  

 

All but confessing himself to be a Pythagorean – albeit a Christian Pythagorean –, Bouvelles 

initiates his Liure ſingulier & vtile, tovchant l’art et practique de Geometrie (1542)2 – 

henceforth Livre singulier – by declaring geometry to be subservient to and dependent on 

arithmetic. The latter, he explains – in allusion to the Pythagorean tetraktys – consists of four 

principles, the numbers 1, 2, 3 and 4, whose sum is the perfect3 number 10 which comprises 

all things. These noetic principles are instantiated corporally by the corresponding four 

principles of geometry, to wit: the point, the line, the surface and the solid body. 

 Figurate numbers, that is collections of units displayed as geometrical figures, had 

various uses in Antiquity. They may have also suggested certain analogies to Bouvelles. 

Ordinary figurate numbers are built up from the unit by subjoining to each member of the 

sequence a gnomon, which transforms each number to the next one in the sequence. For 

regular polygons, the gnomon has the shape of the polygon minus two sides. Figure 3 depicts 

the first few triangular numbers with their gomons indicated. 

 

 

 

 
2 This is a rewritten version of [Bouillus] (1511), reputed to be the first treatise on geometry published in French. 

The reworked version treats pretty much of the same material with, however, some additions, and its layout is vastly 
improved, making it much more reader-friendly. On this, see also Oosterhoff (2017). 
3 The number 10 is perfect because of its completeness. This should not be confused with another kind of perfect 

numbers, those that are the sum of their aliquot parts. 

Figure 3. First five triangular numbers. 

   Figure 4. First five square numbers. 
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Figure 4 does the same thing for square numbers. 

 One of the important features of figurate numbers is that there are multiple relations 

subsisting among them. Figure 5 shows two different decompositions of the fifth square 

number. 

 

 

The relation is obviously generalizable: a square number is equal to the 

corresponding triangular number and its predecessor; it is also equal to the corresponding 

linear number and two of the preceeding triangular number. By using indexed variables, 

which, of course, were not available to Bouvelles, this can be stated more precisely. To this 

end, let 𝑡𝑛 be the nth triangular number, 𝑠𝑛 the nth square number and 𝑙𝑛 the nth linear number. 

Then we have 

 

𝑠𝑛 = 𝑡𝑛 + 𝑡𝑛−1 = 𝑙𝑛 + 2𝑡𝑛−1. 

 

 Now, all these types of figurate numbers have algebaic formulations4, but these do 

not concern us at the moment. Rather, let’s compare linear numbers with geometric lines. 

From the times of Euclid, at least, the geometric line has been considered as having no 

thickness. Linear numbers, in contrast, may be considered as “broad lines”, much in the 

manner of Høyrup’s (2002) interpretation of Babylonian calculation. Geometry is an 

idealization of real-world corporal relationships, whereas figurate numbers comprise a 

phenomological model for perceiving the more esoteric noetic relationships of arithmetic. 

Nonetheless, even though body is an imperfect instantiation of arithmetic and, thus, 

arithmetical results do not always carry over into geometry, arithmetical methods may 

suggest ways of investigating geometry. The case in point is that decomposition is an 

interesting way of investigating geometrical relationships. 

 It is, of course, quite easy to form figurate star polygons from the figurate polygons 

by appending to each side of the latter the appropriate triangular number. Herein the 

proceedure will be illustrated with regard to another kind of figurate number, centered 

figurate numbers. In contrast to ordinary figurate numbers, which grow from a common 

vertex (the unit) by adding a gnomon of two less sides than that of the polygon in question, 

centered figurate numbers grow by appending ever greater sizes of the polygon in question 

about a common center (the unit). Both proceedures depend on the fact that the unit is the 

 
4 𝑙𝑛 = 𝑛, 𝑡𝑛 =

𝑛(𝑛+1)

2
 and 𝑠𝑛 = 𝑛2. 

Figure 5. Two decompositions of the fifth square number. 
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first member of every sequence of figurate polygons. We would probably consider this to be 

the result of expanding the definition of “polygon” in order to obtain a zero-sided 

“degenerate” polygon, but the Pythagoreans saw the unit as the arithmetical correlate of the 

all-encompassing One – the all-encompassing Godhead for Christian Pythagoreans – and, 

thus, it is no surprise that the unit is a triangle, a square, etc. and that, in each case, it gives 

rise to the other members of the sequence. 

 Now, Bouvelles does not treat of figurate numbers in Livre 

singulier, but he does investigate, under the name arithmetice rose5, 

centered figurate numbers in his Libellus de mathematicis roſis 

(Bouillus, 1510a). Letting ℎ𝑛 be the nth ordinary hexagonal number (1, 

6, 15, 28, 45, 66, 91, …) and 𝐻𝑛 the nth centered hexagonal number (1, 

7, 19, 37, 61, 91, 127, …), Bouvelles includes a depiction of 𝐻3 in the 

margin of his text (Figure 6) and observes (Figure 7) that 

 

𝐻𝑛 − ℎ𝑛 = 𝑠𝑛−1. 

 

 

 Interestingly, since the successive gnomons for, say, centered hexagonal numbers 

are naught but the successive multiples of six, there is a beautiful result for the nth hexagonal 

number in terms of (ordinary) triangular numbers. That is, since 𝐻𝑛 = 1 + 6 + 12 + 18 +
⋯+ (𝑛 − 1)6 = 1 + 6(1 + 2 + 3 +⋯+ (𝑛 − 1)), we obtain6 

 

𝐻𝑛 = 1 + 6𝑡𝑛−1. 

 

 In order to obtain the centered hexagonal star number 𝑆𝐻𝑛, we append a copy of the 

(ordinary)7 triangular number 𝑡𝑛−1 to each of the six sides of 𝑆𝐻𝑛. Figure 8 (left side) shows 

𝑆𝐻3 The body of the star is the centered hexagonal number 𝐻3 = 19, whereas each arm 

thereof is 𝑡2 = 3, making a total of 6×3 = 18 in the six arms. Figure 8 shows how this relation 

is maintained for all hexagonal numbers. The gnomon of the hexagonal body is shown in 

grey (18 grey stones) and the gnomon of each of the triangular arms is shown in yellow (18 

 
5 Arithmetice is a rare form for arithmetica and rose a rare form for rosa. 
6 For those who would like to maintain the triangular theme, 𝑡1 may be substituted for the unit. The relation is clearly 

generalizable: let m𝑃𝑛 be the nth m-gonal number, then m𝑃𝑛 = 1 +𝑚𝑡𝑛−1. For those of the polytheistic persuasion, 

observe that m𝑃𝑛 ≡ 1 (mod m). 
7 Of course, centered triangular numbers may be used, but, for the first approach to star-making, it is more intuitively 

pleasing to use ordinary triangles. 

Figure 6. 𝐻3. 

Source: Bouillus 

(1510a), p. 180. 

Figure 7. 𝐻𝑛 − ℎ𝑛. 

Source: Bouillus (1510a), p. 182. 
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yellow stones). Therefore, the difference does not change. Algebraically, this becomes 

obvious: Hexagonal body – 6(triangular arm) = 1 + 6𝑡𝑛−1 − 6(𝑡𝑛−1) = 1. 

 

 

 Right at the end of Libellus de mathematicis roſis, Bouvelles mentions another kind 

of centered polygonal number, resulting from removing the central stone (which corresponds 

to removing the initial unit from the polygonal sequence). The complete centered polygonal 

numbers he calls arithmetice roſe centrum poſſidentes, those without the center stone, 

arithmetice poligonie centro carentes. Naturally, one can also take the central stone from the 

star figurate numbers, obtaining thereby an uncanny visual image (see Figure 9). The missing 

stone at the center of the figure reminds us of an eye and, thus, of the desembodied eye 

symbolism that has appeared (semi-independently) throughout history in many different 

cultures, from the Egyptian Eye of Horus to the eye in the triangle on the US dollar. It is, 

nevertheless, much more abstractly mystical, because, instead of presenting a likeness to the 

physical eye, it represents the all-seeing eye that is not itself seen. 

The removal of the central stone, however, is not conceptually arbitrary, given the 

Christo-Pythagorean context in which it occurs. The central stone is, of course, the first 

member of the sequence of star figurate numbers of which it is a part. As such, it is a 

mathematical correlate of the Pythagorean One and the Christian Godhead. Philosophically, 

it represents Being, the underlying sustenance of everything that exists, but which is never 

found of itself, only as beings. 

In any case, computationally, the star polygons with the center stone removed are 

easily calculated. Let, for example, 𝑆𝐻𝐸𝑛 be the nth figurate star hexagon with an eye. Then, 

clearly, 𝑆𝐻𝐸𝑛 = (body of the (full) star minus the unit)+(arms of the star). But, as we have 

already seen, the arms are a unit less than the (full) body. Therefore, applying the formula for 

𝐻𝑛 to find the body of the star, we obtain 

 

𝑆𝐻𝐸𝑛 = 12𝑡𝑛−1. 

 

Thus, as in this special case, in a centered polygon with the center stone removed, the arms, 

altogether, contain the same amount of stones as does the polygonal body. 

Figure 8. How to generate 𝑆𝐻4 from 𝑆𝐻3. 
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Given that 𝑡14 = 105, we find that 𝑆𝐻𝐸15 = 1260, which is traditionally 

understood as the number of days in the Biblical (Daniel; Revelation) time (a year of 360 

days), times (two years) and half a time (half a year). Thus, Figure 9 is a (Pythagorean) 

mathematical symbol of Christian doctrine.8 

 

 

 

The Livre singulier 

 

I have already indicated, en passant (footnote 2), that the Livre singulier is a rewritten version 

of the earlier and rather unsuccessful Geometrie en francoys. Saito (2017) characterizes the 

work9 as a practical, as opposed to a scientific, treatise. It is, in fact, not only composed in 

the vernacular, but also abandons the rather strict Euclidean proof format as it explains how 

to use the tools of geometry in order to draw geometrical diagrams and, further, is explicitly 

addressed to auturgis, manúve operarijs (“handymen, or manual workers”; probably better, 

 
8 There should, however, be no grey stones in the figure. I have, nonetheless, used two colors in the figure to highlight 

its mathematical structure. 
9 Saito (2017) uses the 1551 edition of the work. 

Figure 9. 𝑆𝐻𝐸15. 
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“craftsmen”) such as (see Saito (2017) and/or Oosterhoff (2017)) artisans working with 

problems in surveying, mechanics, pneumatics and hydrostatics. He further states that 

 

“Confeci igitur Gallica lingua Geometricum Iſagogicum 

(I have therefore composed [the present] Introduction to Geometry in the 

French language).” 

 

In this regard, the Livre singulier seems to be both an introduction to geometrical 

constructions for those who wish to apprentice themselves to a master and a kind of handbook 

for the craftsman, especially regarding questions relating to proportionalities. 

 With all this in mind, we may now ask: Why did Bouvelles think it appropriate to 

include star ploygons in this introductory work? Aldo Brigaglia, Nicla Palladino & Maria 

Alessandra Vaccaro (2018) suggest that the main reason is because of their use in decorative 

motifs. That is, of course, consonant with the practical nature of the Livre singulier since 

pratice, or rather art (τέχνη), is traditionally understood as an activity that produces something 

– usually something physical. Even products like decorative motifs, however, have 

theoretical underpinnings. Some of Bouvelles concerns seem to be 

 

tesselations of the plane 

planification of polyhedra 

first steps toward star polyhedra 

mysticism and magic. 

 

Actually mysticism is theoretical, whereas magic is a τέχνη because it proposes concrete 

realizations. Still, its occult nature makes it inappropriate for explicit treatment in an 

introduction and, thus, Bouvelles contents himself with a quick presentation of some ancient 

mystical and magical symbols such as the star pentagon (pentagram) and the star hexagon 

(hexagram), geometrical correlates of the star figurate numbers. In fact, he also includes other 

themes in his book that are of a more theoretical nature. Speaking of the area of the circle, 

for example, he sets out a sequence of concentric circles with integral-valued radii – which, 

of course, mirrors the sequences of centered figurate polygons – and observes that the 

proportion of their several areas is as that of the square numbers; indeed, his constant 

preoccupation with ratios and proportions harkens back to “sacred arithmetic”. 

 

The Egredient Pentagon 

 

Egredient angles of a figure are its external angles. Thus an egredient pentagon is a star 

pentagon formed by producing the sides of a regular pentagon and thereby creating a five-

pointed star. Bouvelles consistently uses the phrase “pentagone ſaillant ou egredient”, but 

tends to drop the ſaillant thereafter. He actually starts, however, by observing that the 

diagonals of the pentagon create another, smaller pentagon in the original’s interior, though 

inversely situated (contrepoſé). This is an important observation because it shows the 

existence of incommensurable quantities (see von Fritz (1945)) and was reportedly used as a 

Pythagorean emblem (see, Fossa (2006)). Bouvelles does not mention this, as behooves his 
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introductory purposes, but he certainly was quite aware of the fact. He also does not explicitly 

state that the star pentagon formed by the diagonals is an egredient pentagon, but that such is 

the case is entirely obvious since, in Figure 10, GFC̅̅ ̅̅ ̅, for example, is, by construction, a 

segment and, therefore, GC̅̅̅̅  is 𝐺𝐹̅̅ ̅̅  produced. Hence, the egredient pentagon in Figure 11 will 

produce Figure 10 by connecting the successive points of the star. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The only proposition that Bouvelles advances about the egredient pentagon is that 

the sum of its angles (that is, the angles at the star points F, G, H, I and K in Figure 11) is 

two right angles. Earlier, Bouvelles had shown that the triangle ACE in Figure 10 is isosceles, 

each of whose base angles (the angle at A and the angle at E) is double of its third angle (the 

angle at C). From this, it is almost immediate that the arm of the star divides the angle of the 

larger pentagon into three equal parts. Thus, the interior angles of this larger pentagon 

consists of 15 angles all equal to the angle at C of the triangle ACE. But he had also shown 

that the interior angles, all together, “are worth” (valent) six right angles. Only five of these 

15 angles, however, belong to the star. Hence, since one third of the 15 angles belong to the 

star, they will be worth one third of the six right angles, that is, two right angles. 

 Now, it is not at all clear why Bouvelles goes out of his way to prove this seemingly 

obtruse proposition, for he tells us nothing more about the egredient pentagon and just merrily 

moves on to consider the hexagon. Before following him to the next polygon, however, we 

may observe a singular import of the present proposition for the artisan. Since the five angles 

at the star points comprise two right angles, we can adjoin them adjacently so that the star 

points come together at a single point. The result will fill out a straight angle and, in fact, the 

resulting figure will be half a regular decagon. Thus, Bouvelles has in fact bestowed on the 

artisan an easy way to construct the regular decagon and, consequently, a ten-pointed star. 

(He does not teach his readers how to bisect the angle.) In any case, he is also very interested 

in, fairly systematically, giving relative measures for the component triangles of the 

Figure 10. Diagonals of a pentagon. 

Source: Bouillus (1542), p. 22a. 
Figure 11. An egredient pentagon. 

Source: Bouillus (1542), p. 22b. 
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polygonal figures, which would presumably be of use to the artisan in planing his 

compositions. 

 

The Egredient Hexagon 

 

The hexagon has two kinds of diagonals. The longer of them pass through the center of the 

hexagon. The shorter, when they are all drawn in, form a star hexagon in the interior of the 

original hexagon. As in the case of the pentagon, by construction, the star will be an egredient 

hexagon. The area of the smaller hexagon, GHIKLM in Figure 12, will be one third that of 

the original hexagon ABCDEF. Bovelles shows this by decomposing the figure into 

component parts, just as figurate numbers are investigated by decomposition (see Figure 5). 

His proof consists in observing that the larger hexagon has 18 component triangles, whereas 

the smaller one has but six. Since all of the component triangles have the same area, the stated 

ratio is established. As is typical of Bouvelles’ exposition, this is a rather abreviated proof, 

especially taking into account his intended readership, the major problem being that of 

showing, for example, that the area of triangle ABG is equal to that of triangle AGM. To do 

so, one would draw a parallel to BF̅̅̅̅  through A and observe that the two aforementioned 

triangles, contained in the two parallels, have equal bases. This proves that they have equal 

areas by the appropriate proposition that he had already proven earlier (p. 14b). 

 

 

 It is also evident from Figure 12 that the area of the egredient hexagon is double that 

of the hexagon of which it is a star. Since Bouvelles, for expository reasons, does not identify 

the star in the figure as an egredient hexagon, he has to prove this later on (p. 25b), which he 

does in exactly the same way, by decomposition. The result parallels one which we have 

already seen for the figurate centered star hexagon with the central stone removed. 

Figure 12. Some diagonals of a hexagon. 
Source: Bouillus (1542), p. 23b. 
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 Bouvelles next observes that the angles of the egredient hexagon – those at the six 

star points – are equal to four right angles. This is because the star arms are equilateral and, 

therefore, equiangular triangles, so that three of these angles make up two right angles and, 

hence, six of them make up four right angles. So this is an easy observation, equivalent to 

that acording to which the hexagon is composed of six equilateral triangles (p. 23a). 

 In terms of its composition, Bouvelles observes that the egredient hexagon can also 

be seen as being formed from two equilateral triangles. They are to be situated inversely to 

each other in such a way that each of the triangles cuts the sides of the other in three equal 

parts, as triangles ABC and triangle DEF in Figure 13. 

 

The Egredient Heptagons 

 

The regular heptagon has three kinds of diagonals. The longest contains the center of the 

hexagon and divides it into two equal parts. Since they all meet at the center, they do not 

form egredient heptagons.10 The shortest of these diagonals, when all drawn in, analogously 

to the previous cases, form a regular heptagon in the interior of the original one. The same 

happens when the intermediate sized diagonals are all drawn in. Bouvelles, however, 

breaking with his procedure in the two previous cases, does not draw in the diagonals and 

advances directly to the egredient heptagons by producing the sides. 

 

 
10 Actually, it would not be remiss, from a Pythagorean arithmetical standpoint, to consider the center point of any 

regular polygon as a polygon of that type. Hence, given any regular n-gon, we would obtain an n-pointed star, whose 
star arms would be, instead of triangles, the segments from the center to the vertices. In the case of the hexagon, for 

example, the resulting star would be the familiar asterisk (*). Since Bouvelles gives us no leave for such speculations, 

however, we do not follow up on this thought here. 

Figure 13. Egredient hexagon as 

two triangles. 

Source: Bouillus (1542), p. 25a. 
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 Bouvelles considers first the egredient heptagon created by producing the sides 

adjacent to each side of the original heptagon. As in the case of the egredient pentagon and 

the egredient hexagon, the base of the star’s arms are the sides of the original heptagon (see 

Figure 15). He has but little more to say about this star, except for observing that a straight 

line from any star point passing through the center of the original heptagon will contain the 

opposite vertex of the original heptagon and divide it, and thereby also the egredient 

heptagon, into two “equal” (eſgalles) parts. Such is, for example, the segment from the 

topmost star point in Figure 14 to the vertex labelled D. Observe that in Figure 14 only six 

of the seven bisectors are drawn in. 

 In order to fashion the second type of 

egredient heptagon (having star points H, I, K, L, 

M, N and O in Figure 16), Bouvelles eschews 

returning to the original heptagon and, rather, 

prolongs the sides of the first type of egredient 

heptagon (having star points A, B, C, D, E, F and 

G). That is, he produces the sides of the star arms of 

the first type of egredient heptagon, as is shown in 

Figure 16 (in which I have highlighted the first star 

to make its structure clearer). Since the star arms are 

larger and sharper (plus aguz), he calls this star 

“much more egredient” (moult plus egredient) than 

the former one. Figure 16 also makes clear that this 

procedure is equivalent to producing the sides 

adjacent to each angle11 (as opposed to the sides 

adjacent to each side12) of the original heptagon. 

 
11 Schläfli symbol 7/3. 
12 Schläfli symbol 7/2. 

Figure 14. An egredient heptagon. 
Source: Bouillus (1542), p. 27a. 

Figure 15. Previous figure simplified. 

Figure 16. Another egredient heptagon. 

Source: Bouillus (1542), p. 27b, modified. 
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 Finally, Bouvelles observes that the sum of the angles at the star points (angles 

exterieurs) of the sharper star is equal to two right angles. Recalling the corresponding result 

for the pentagram, he declares (Bouillus, 1542, p. 27b) that “seven are worth as much as five” 

(Sept valét dóc autant que cinq.) or, equivalently, the point angle of the pentagonal star is to 

the point angle of the sharp heptagonal star as seven is to five. Although Bouvelles does not 

tell the reader what happens in the other case, it is easy to calculate that its point angle is 

thrice that of the sharper star. 

 He continues to make observations about the relative proportions of the regular 

polygons, but does not extend his further investigations to the polygonal stars. 

 

Other Kinds of Stars 

 

As Bouvelles himself (Bouillus (1542, p. 22b)) observed, there can be no egredient triangle 

or square because the prolongations of the appropriate sides, in the case of the triangle, 

already intersect at the vertecies of the triangle, or, in the case of the square, do not intersect. 

Other kinds of stars can, of course, be produced artificially by merely appending isosceles 

triangles to the sides of a polygon.13 Bouvelles, although he does not call them “stars” (but 

neither does he call egredient polygons “stars”), presents figures of this type in the context 

of the planification of solid angles. 

 

 

 

 

 

 Figure 17 shows three such figures resulting from placing of equlateral arms along 

the sides of a “middle” (moyen) polygon. When the star points are lifted up and meet at a 

single point above the middle polygon, we obtain a solid angle, whose base is the aforesaid 

middle polygon. Thus, for the middle equilateral triangle, we obtain the angle of the regular 

tetrahedron; for the middle square, we obtain the angle of the regular octahedron and, for the 

middle regular pentagon, we obtain the angle of the regular icosahedron. Bouvelles then 

observes that, upon using the regular hexagon as the middle polygon, no solid angle is formed 

because the arms of the star do not meet above the proposed base, but fall back down on it. 

In fact, the star is, in this case, none other than the egredient hexagon. 

 
13 We have already seen a star point (note 10). A star segment would be a rhombus. 

Figure 17. Three stars with equilateral arms. 

Source: Bouillus (1542), p. 39a. 
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 Although Bouvelles does not mention it, another interesting case (which I only 

mention in passing) for the artisan would be stars in which the arms are not all congruent. 

Such, for example, is the familiar star representing the cardinal points of the compass, in 

which the main points (N, S, E, W) have the longest arms, intermediate directions (NE, SE, 

SW, NW) have shorter arms and the next subdivision (NNE, ENE, ESE, SSE, SSW, WSW, 

WNW, NNW) has even smaller arms. Stars of this kind are often refered to as “roses”. 

 If we be willing to countance another degree of abstraction, we could have “stars” 

whose arms are not triangles. Bouvelles, still in the context of solid geometry, puts four 

squares about a middle square and five regular pentagons about a regular pentagon (see 

Figure 18). In the first of these cases, lifting up the arms, but not to a common point, produces 

a cube14 and, in the second, half of a dodecahedron. 

 

 

 Another step would be to accept irregular stars, so that, for example, the Pythorean 

Theorem (Bouillus,1542, p. 16b) could be subsumed under the concept of “star”. Hence, 

although, as already stated, Bouvelles does not use the word “star” in his text, the star concept 

does provide us with a unifying theme for many of the topics treated of in the Livre singulier.  

 

 

 

 

 

 
14 The figure is not a true planification of the cube because it lacks one side thereof. 

Figure 18. A square star with square arms and a pentagonal star with pentagonal arms. 

Source: Bouillus (1542), p. 39b. 
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Conclusion 

 

Charles de Bouvelles was not the first writer to investigate star figures mathematically. Both 

Thomas Bradwardine (1295?–1349) and Adelard of Bath (1075–1160), for example, had 

already done so. Brigaglia, Palladino & Vaccaro (2018), in this sense, characterize his work 

as derivative, although they also point out that his proofs by decomposition into component 

triangles is noteworthy. We should, however, take into account that the Livre singulier was 

conceived of as an introductory work. Even so, the topic of star polygons was not standard 

in geometrical texts and thus it is interesting to see how much of what Bouvelles presents in 

his text can be tied together, albeit loosely and incipiantly, by star figures. 

 It is also significant that the study of star polygons naturally lends itself to 

description by ratios and proportions. This is, of course, important in a time in which the 

concept of function has not come into its own, so that equations were set up largely through 

consideration of proportions. The concept of proportion, however, takes on a special 

importance for Bouvelles due to his Pythagorean proclivities. Indeed, the whole worldview 

of the Pythagoreans – and those who were influenced by them – was imbued with the concept 

of ratio and proportion owing to their doctrine of the resemblance between the microcosm 

and the macrocosm. Bouvelles’ younger contemporary Andrea Palladio (1508–1580), for 

example, as well as the seminal Roman architect Marcus Vitruvius Pollio (1st century BC), 

desired to construct buildings reflecting the mathematical structure of the universe and, of 

course, Plato’s Republic is explicitly structured by comparing the macrocosm (the universe), 

the mesocosm (the State) and the microcosm (man), although much of his exposition is 

couched in quantitative, not qualitative, terms. 

 As a Pythagorean, Bouvelles believes that arithmetic is superior to geometry and, in 

this regard, it is probable that he saw many of his geometric results as being akin to those 

found in his study of figurate numbers. Even his noteworthy method of decomposition of 

geometric figures into triangles may have been inspired by similar considerations with regard 

to the investigation of such figurate numbers. As a Christian, Bouvelles would be interested 

in incorporating the esoteric Pythagorean mathematical insights into Christian doctrine. 

Hence, one of the important ends of the Livre singulier would be to prepare the artisan for 

graphic design. 

 Graphic design is not only important because of the symbol’s esoteric meaning for 

mystical knowelege among the elite and ocult knowelege for magical praticioners. It is also 

a method for channeling God’s grace to those ignorant of deeper philosophical questions. 

Stained-glass windows, such as the one he gifted to the Collégiale at Saint-Quentin, were 

supposed to perform such a function for the brethren who were illiterate and/or had no Latin 

with which to participate more fully in the Mass. The principle goes back at least to Plato’s 

espousal of astrology based on the “music of the spheres”: each of the moving planets emits 

a characteristic musical note, which is implanted on the soul of the newborn when the planet 

is overhead at the time of the child´s birth. Thus, the esoteric function of graphic design for 

Bouvelles, as for many of his contemporaries, was related to Christian charity and the 

propagation of the faith. 
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