UMA NOTA SOBRE A TEORIA DOS GRUPOS: DA TEORIA DE GALOIS À TEORIA DE GAUGE
DOI:
10.47976/RBHM2012v12n2471-81Keywords:
Teoria dos grupos, Grupo de laços, Teoria de Galois, Teoria de GaugeAbstract
Neste artigo apresentamos um breve relato histórico sobre a teoria dos grupos. Sintetizamos a evolução do conceito de grupo a partir de sua origem, com os grupos de Galois, direcionando os fatos até os modernos grupos de calibre da teoria de Gauge. Nessa transição, enfatizamos o conceito de grupo de laços, destacando sua importância nas diversas áreas da Ciência. Este informativo é nossa principal contribuição acadêmica, tendo em vista a escassez de literatura em língua portuguesa sobre a teoria de grupos de laços.
Downloads
Download data is not yet available.
Metrics
Metrics Loading ...
References
BAKER, H. F., Alternants and continuous groups, Proceedings of the London Math. Soc., Second Series 3 (1905), 24-47.
BOREL, A., Linear algebraic groups. Benjamin Inc., 1969.
BOURBAKI, N., Élements de Mathématique, Groupes et algèbres de Lie, Chapitre 4: Groupes de Coxeter ET systèmes de Tits. Chapitre 5: Groupes engendres par dês réflexions. Capitre 6: Systèmes de racines, Hermann, Paris, 1968.
_____ Élements de Mathématique, Groupes et algèbres de Lie, Chapitre 2: Algèbres de Lie libres. Chapitre 3: Groupes de Lie, Hermann, Paris, 1972.
BREDON, G. E. Topology and Geometry. Graduate Texts in Mathematics (1 ed.). Springer, 1997.
CAYLEY, A. On the theory of groups, as depending on the symbolic equation . Philosophical Magazine, 7 (1854), 40-47, e em The Collected Mathematical Papers of Arthur Cayley. Cambridge University Press, Cambridge, 1889, vol. 2, pp. 123-130.
CHAU, L. L., GE, M. L., SINHA, A., e WU, Y. S., Hidden symmetry algebra for the self-dual Yang-Mills equation, Phys. Lett., 121B (1983), 391-396.
BOREL, A., Linear algebraic groups. Benjamin Inc., 1969.
BOURBAKI, N., Élements de Mathématique, Groupes et algèbres de Lie, Chapitre 4: Groupes de Coxeter ET systèmes de Tits. Chapitre 5: Groupes engendres par dês réflexions. Capitre 6: Systèmes de racines, Hermann, Paris, 1968.
_____ Élements de Mathématique, Groupes et algèbres de Lie, Chapitre 2: Algèbres de Lie libres. Chapitre 3: Groupes de Lie, Hermann, Paris, 1972.
BREDON, G. E. Topology and Geometry. Graduate Texts in Mathematics (1 ed.). Springer, 1997.
CAYLEY, A. On the theory of groups, as depending on the symbolic equation . Philosophical Magazine, 7 (1854), 40-47, e em The Collected Mathematical Papers of Arthur Cayley. Cambridge University Press, Cambridge, 1889, vol. 2, pp. 123-130.
CHAU, L. L., GE, M. L., SINHA, A., e WU, Y. S., Hidden symmetry algebra for the self-dual Yang-Mills equation, Phys. Lett., 121B (1983), 391-396.
Downloads
Published
2020-10-31
Métricas
Visualizações do artigo: 1292 PDF (Português (Brasil)) downloads: 977
How to Cite
SOUZA, Josiney A. UMA NOTA SOBRE A TEORIA DOS GRUPOS: DA TEORIA DE GALOIS À TEORIA DE GAUGE. Brazilian Journal on the History of Mathematics, São Paulo, vol. 12, no. 24, p. 71–81, 2020. DOI: 10.47976/RBHM2012v12n2471-81. Disponível em: https://mail.rbhm.org.br/index.php/RBHM/article/view/108. Acesso em: 25 nov. 2024.
Issue
Section
Artigos